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EQUATIONS OF MOTION FOR NONAXISYMMETRIC 
VIBRATIONS OF PROLATE SPHEROIDAL SHELLS 

1. INTRODUCTION 

Prolate spheroidal shells (PSS) are shells of revolution that can span a wide range of 
shapes, from spherical to needle-like. They are essentially ellipsoids of revolution about their 
major axis and may have a constant thickness or a variable thickness defined by two confocal 
ellipses. The ellipse is characterized by an interfocal length d and eccentricity 1/a, where a is the 
radial coordinate of the shell's mid-surface in the prolate spheroidal coordinate system. In the 
limits d -> 0, a -» °°, and (da/2) -* R, the ellipse approaches a circle whose radius is R and the 
shell then becomes spherical. 

The theory of thin elastic shells is based on the approximation that the shell thickness h is 
much smaller than the typical dimension of the shell R, i.e., h/R « 1. Typically, the ratio of 
h/R is taken to be less than 0.05. Unlike thin elastic plates, the in-plane and out-of-plane 
displacements of thin elastic shells are coupled. Furthermore, unlike elastic plates, elastic shells 
can deform in an extensional mode (membrane) or in a coupled extensional/flexure mode 
(membrane and bending). 

In the extensional theory of thin shells of revolution, there are three independent 
displacements: w is the out-of-plane displacement, u is an in-plane displacement (extension) in the 
plane of the generator surface, and v is a displacement perpendicular to the generator surface, i.e., 
torsional. The displacements u and w are coupled in longitudinal and flexural deformation, while 
v is uncoupled and is purely torsional deformation. Therefore, the strain energy density is 
exclusively dependent on the extensional strains of the shell's mid-surface and is linearly 
dependent on the thickness h/R. Thus, for the extensional theory of shells, there are three 
branches in the frequency-wavenumber spectrum corresponding to the three displacements u, v, 
and w. The lowest branch is an acoustic branch representing flexural vibrations of the shell where 
|w/u| > 1. This acoustic branch has a constant limit in the frequency as the wavenumber k -» °°. 
This means that the group and phase velocities for this branch approach zero as k -> °°, rather than 
the sound speed of the shell material. Furthermore, the flexural resonance frequencies are not 
distinct for k -> °°, since the frequency spacing approaches zero as the mode number k becomes 
very large. The theory predicts the low-ordered mode resonance frequencies accurately, but 
becomes inaccurate after the first few modes. The second acoustic branch represents a decoupled 
(pure) torsional displacement v, which has group and phase velocities correctly approaching the 
shear sound speed of the shell material, i.e., cs = G / ps as k -> °°, where G is the shear modulus, 



and ps is the density. The third branch is an optical branch that represents |w/u| < 1, i.e., primarily 
in-plane deformation of the shell, representing longitudinal vibrations. As k -» °o, this branch has 
phase and group velocities equal to the sound speed in plate materials (i.e., c2, =E/(ps(l - v2)), 
where E is the Young's modulus and v is the Poisson's ratio), which are close to the exact values. 

In the coupled extensional-bending theory of thin shells, h/R « 1 is again assumed. 
However, the change of the curvatures of the shell's mid-surface ßj and ß2 are now included in 
the strain energy density of the shell. These changes of curvature (bending) are expressed in 
terms of the derivatives of u, v, and w, so that the strain energy density is again dependent on 
only these three displacements. The strain energy has membrane components that are linearly 
dependent on the thickness (h/R), and additional bending components have cubic dependence on 
the thickness, i.e., (h3/R3). Thus, there are still three branches in the frequency-wavenumber 
spectrum corresponding to the three independent variables u, v, and w. The lower acoustic 
branch representing the flexural vibration is dependent on terms of (h/R) and (h3/R3). However, 
the group and phase velocities become infinite as k -> ~, i.e., co « k2, similar to the Bernoulli- 
Euler bending theory of elastic plates. Thus, the flexural vibration is accurate in the low 
frequency range but is still inaccurate in the high-frequency range. The second acoustic branch 
is the extensional torsional mode, which is not influenced by the addition of bending. The optical 
branch representing longitudinal vibrations is slightly influenced by the bending terms; and thus, 
the group and phase velocities are good approximations to the exact values in the limit of k -» °° 

To improve the accuracy of the flexural vibration branch for high frequencies, the thin shell 
theory is improved by the addition of shear deformations and rotatory inertias. This means that 
the change of curvatures ßx and ß2 are no longer derivatives of u, v, and w, but are independent 
variables. The new thin-shell theory now has five independent variables, (u, v, w, ßl5 and ß2); 
the frequency-wavenumber spectrum has five branches: two acoustic branches (one torsional and 
one flexural) and three optical branches (one longitudinal and two thickness shear modes). The 
flexural branch now has the correct group and phase velocities. 

This report first surveys the literature covering prolate spheroids and PSS for free and 
forced vibrations of unloaded shells, fluid-filled shells, free and forced vibrations of submerged 
shells, and acoustic scattering from submerged shells. It then presents the development of the 
five coupled partial differential equations for thin elastic shells, including extensional, bending, 
shear deformation and rotatory inertias. These equations are developed from the Lagrangian of 
the strain and kinetic energy densities of the shell, using Hamilton's variational principle. This 
approach leads to an accurate, self-consistent coupled set of five partial differential equations of 
the correct expansion in h/R valid to 0(h3/R3). This approach also guarantees a self-adjoint 
positive-definite system of equations that leads to real and positive eigenvalues and real 
eigenfunctions. 



2. LITERATURE REVIEW 

2.1   FREE AND FORCED VIBRATIONS OF UNLOADED PROLATE 
SPHEROIDAL SHELLS (PSS) 

DiMaggio and Silbiger1 were the first to examine the free extensional axisymmetric 

torsional vibrations of a PSS of variable thickness. The equations of motion were based on the 
Lagrangian of the shell using Hamilton's variational principle. The exact solution was found in 
terms of the angular prolate spheroidal wave function Son(r|). Silbiger and DiMaggio2 developed 

the equations for axisymmetric extensional flexural vibration of PSS of a variable thickness. 
Using the Rayleigh-Ritz method, they obtained the resonance frequencies and mode shapes, but 
the solution was limited to low eccentricity of the shell ( = 0.7). Shiraishi and DiMaggio3 

obtained the solution by using perturbation techniques. The perturbation parameter was the 
eccentricity (1/a) and their perturbation series was extended to 0(l/a4). It should be noted that 
the zero order term is the spherical shell resonances and mode shapes. Again these frequencies 
were valid for low eccentricity (= 0.7). Nemergut and Brand4 developed the extensional flexural 
vibration of a constant-thickness shell using a numerical integration scheme. DiMaggio and 
Rand5 obtained the solution of variable-thickness flexural extensional vibration by finite 
difference techniques. Rand6 obtained the exact solution for torsional vibration of solid prolate 
spheroids and prolate spheroidal shells using the exact theory of elasticity. 

Burroughs and Magrab7 were the first to include bending and shear deformation in the shell 
equations using a variational approach in terms of shear and moment resultants. They developed 
five coupled equations for nonaxisymmetric motion for a shell with constant thickness. 
However, they obtained solutions for only the axisymmetric vibration using Galerkin's method, 
which means that there are three branches for the axisymmetric case. They showed that for 
axisymmetric vibrations, the resonance frequencies for the flexural modes increase with (h/R), 
while the longitudinal modes are not influenced by the addition of bending or shear 
deformations. Of course, there is a new branch representing thickness-shear mode that was 
shown to be inversely proportional to (h/R). Yahner and Burroughs8 obtained the axisymmetric 
vibration of an open shell with a variable thickness. They exhibited the influence of the opening 
of the shell on the three axisymmetric modes, flexural, longitudinal, and thickness-shear. Chen 

and Ginsberg9 revisited the problem by focusing on the loci of the eigenvalues of three PSS for 
the axisymmetric vibration, but they included only extensional and bending terms and used the 

Galerklin method in their solution. 



2.2   VIBRATION OF FLUID-LOADED PSS 

The first attempt at examining the fluid loading effects on the vibration of submerged PSS 

was made by Hayek and DiMaggio.10,11 The complex natural frequencies of submerged PSS using 

only extensional strain energy were found for shells of variable thickness using perturbation 

techniques on the strain energy density and the surface acoustic pressure. They showed that the 

two pairs of real frequencies (±co12) of the flexural and longitudinal branches of in-vacuo shells 
have increased to seven frequencies: three pairs of complex frequencies (±0)12,3 + i^ 2 3) and one 

purely imaginary frequency (i^). The two pairs with small imaginary components (±ü>1>2+ i£i(2) 
of the submerged shells correspond to the two real pairs of the unloaded shells. The real parts 

(±0>i,2) decreased from the in-vacuo shells due to the additional fluid mass loading of the acoustic 

medium, and the imaginary parts represent the energy lost through acoustic radiation (acoustic 

resistance) from the shell. The remaining pair (±0)3 + i£3) has a large imaginary part, caused by 

high acoustic resistance. The purely imaginary root implies pure damping. Rand and DiMaggio12 

examined the resonance frequencies of extensional vibration of fluid-filled PSS. The presence of 
a fluid inside the shell increases the number of resonance frequencies because of the three- 

dimensionality of the cavity resonances of the interior of the PSS. Yen and DiMaggio13 obtained 
the solution for the forced vibration of submerged PSS due to axisymmetric time-harmonic surface 
forces. They used numerical integration techniques after transforming the infinite exterior 
acoustic medium domain to a finite domain. Bedrosian and DiMaggio14 obtained the transient 
solution of an axisymmetric extensional vibration of a submerged PSS undergoing sudden 
application of a uniform surface source at t = 0. 

Berger15 was the first to include bending effects in the problem of forced vibration of a 
submerged PSS of constant thickness. He used a finite difference approach for the shell 
equations and mapped the infinite region of the exterior acoustic medium into a finite region. 
Berger presented the response of the shell attributed to a normal transient loading. Lee and 
DiMaggio16 obtained the response of a fluid-filled PSS as a model of a human head. They 
included bending theory in their model and obtained the response of the PSS due to harmonic 

surface sources. Ross and Johns17 obtained the solution for the axisymmetric vibration of a free 
and submerged (both sides) hemi-PSS and conducted experiments to support their analytic 
predictions. Prikhod'ko18 obtained the solution for a slender submerged PSS, but the solution is 
valid for sufficiently slender shells in order to neglect the fluid loading on the shell ends. 
Pauwelussen19 used a finite element method (FEM) to solve the problem of axisymmetric 
response of submerged PSS due to a shock load. Chen and Ginsberg20 obtained the acoustic 
radiation for PSS including bending effects due to axisymmetric mechanical surface forces. 



2.3   ACOUSTIC SCATTERING FROM PSS 

Acoustic scattering from PSS has not been studied as well as the topics of vibration and 

acoustic radiation from PSS. Chertock, Hirsh, and Ogilvie21 obtained the flexural response of 

PSS to incident underwater explosion and tested the theory with experiments on a paralellopiped 

box-shell. Silbiger22 studied scattering from PSS due to an incident time-harmonic planewave by 

approximating the response from one resonant mode. Jones-Oliveira23'24 obtained the transient 

scattering from an axially incident plane wave, i.e., axisymmetric response, from a PSS that 
includes extensional and bending effects using expansions in terms of Legendre polynomials. 
She also obtained the resonances of two different PSS for the first eight flexural and longitudinal 

modes. 

5/(6 blank) 



3. PROLATE SPHEROIDAL COORDINATE SYSTEM 

In this report, the prolate spheroidal coordinate systems of Flammer25 and Hanish, Baier, 

Van Buren, and King26 have been employed. Basically, these coordinates represent ellipsoidal or 

hyperboloidal surfaces (see figure 3.1). The coordinate system transformations from cartesian 

coordinates are given by 

x = ^[(l-i12)(£2-l)]1/2cos4> -1<TI<1, 

y = |[(1 - Tl2)(£2 - Dl172 sin«) 1 < % < co, (3.1) 

and 
d   - 

Z = — TK 
2 0 < 4> £ 2TI, 

where d represents the interfocal distance of the generating ellipse. 

In terms of cartesian coordinates, the prolate spheroidal coordinates are 

2,2 2 x  + v z «. 
+ A— = 1 (ellipsoid surface for constant q), 

Ct\\    :2 (CV-i, (D'< 
2       2                 2 

X   + V                 Z 
—j T = -1 (hyperboloid surface for constant ri), (3.2) 
(^)2d-Tl2)      (|)V 

and 
<|> = arctan (y/x) (half-plane surface for constant (|)). 

The ratio of minor to major axes of a prolate spheroid of constant £, is 

cc = JV^ S>1. 0.3) 



^  x,y 

Figure 3.1. Prolate Spheroidal Coordinate System 

and the eccentricity of the prolate spheroid is 

1 

"I 
Thus, the prolate spheroid represents many ellipsoidal-shaped objects, e.g., 

£ -> 1, a = 0, a straight line of length d, 

\ -» oo, a = 1, a sphere of constant radius = (d£)/2, d -> 0, £ -» ~ 

T| = ±1, semi-infinite lines along the z-axis, 

(3.4) 



TJ = constant, which represents a hyperboloid that makes an asymptotic angle 0 = arccos (TJ) 

with the z-axis, and 

T) = 0, the x-y plane. 

Note that in the limit £, -» °°, d -> 0, the prolate spheroidal coordinates reduce to spherical 

coordinates, i.e., d £/2 -> r, r| -» cos 0, as d -> 0 and £ -> °°. 

The length and area elements are 

ds2 = dx2 + dy2 + dz2 = h2 dr\2 + h| d£2 + h2, d4>2' 

where 

hn = — n    2 

re2 „2\ £z-n 
l-ri2 

1/2 

•vf 52-i 

1/2 
2x/K2    ,M1/2 , and h^ =^[(1-^X^-1)1 (3.5) 

An area element on a surface £ = constant is defined as 

dA=hT1h<t)dTid^ = ^  J<£2-r\2)(£2-l)<h\db, (3.6) 

and the gradient is defined by 

V\|/ = + i-Ti2 dv, e£    U2-l By  
(d/2)^2-n2 a^(d/2)^2-n2 drT(d/2)V($2-i)(i-ii2) a* 

^-      (3-7) 

The Helmholtz equation in prolate spheroidal coordinates is 

(V2+k2)\j/ = 0 

_3_ 

an 
(1_T12)^ + ^2_1)^ + _^-Tl-        o-   ,„2/e2    _2 

dn  a^        a^  (^-i)(i-V)9(|)' S^**^-^ y = 0, (3.8) 

where the nondimensional wavenumber c is given by 

c=-kd. 
2 

(3.9) 



The Heimholte equation is separable into prolate spheroidal wave functions, i.e., 
~cos(m<)))~ 

sin(m<|)) 
Vmn=Smn(c,Tl)Rmn(c,£> (3.10) 

where the angular and radial wave functions Smn(c,Ti) and Rmn(c,£) satisfy the following second- 

order differential equations: 

_d_ 

dr| 
(l-12)^Smn(c,ri) -i 2 2      rn 

w Smn(c,Tl) = 0, (3.11) 

(42-l)-Rmn(c,Ti) 2e2 ,    m 
^mn-CZ^ + 

¥-1 
Rmn(c^) = 0, (3.12) 

where Xmn is the separation constant. 

Note that if £ -> oo, d -» 0, c -> 0, £ d/2 -» r, c£ -> kr, and TI -» cos 0, then these equations 

reduce to the wave equation in spherical coordinates. Thus, X^ -> £ (£ + 1), where £ = m, m + 

l,m + 2,... and 

smn(c> V) * P?(T1) and Q f(y\) (associated Legendre functions), 
Rmn(c. S) * JnOo-)and YnO^)or hn}(kr) and h^(kr) (spherical Bessel functions). 

It should be noted that the angular prolate spheroidal wave functions are dependent on 

wavenumber c unlike the angular spherical wave functions. Both of the prolate spheroidal wave 

functions can be expanded in terms of spherical wave functions. 

10 



4. DEFORMATIONS AND KINEMATICAL RELATIONS 
FOR CURVILINEAR THIN SHELLS 

The theory of thin curvilinear shells depends on assumptions made in the theory of elastic 

media. Specifically, it is assumed that the shell is thin and that deformations are small. The 
shell's mid-surface is defined by general curvilinear orthogonal coordinates, cCj and o^, where z 
is the coordinate normal to the mid-surface of the element (figure 4.1). The theories of thin 
shells have been developed in many books,27"31 and special higher-order theories are presented in 

several research reports and archival papers. 

Figure 4.1. Deformed Element of a Shell 

Let the displacements U1? U2, and W at any point (av a2, z) be given approximately by a 
Taylor series expansion in the thickness coordinate z, i.e., 

ll 



U^ccj, a2, z) = uj(aj, a,) + z ß^ctj, a2), 

U^ccj, a2, z) = u2(al5 a2) + z ß2(a1? a2), 

z2 
W(a1? a,, z) = w(al5 a,) + z w^, a2) + — w2(ai, a2), (4.1) 

where z is the distance along the normal of the mid-surface, -h/2 < z < h/2. 

The assumed displacement fields have in-plane displacements u2 and u2 and out-of plane 

displacement w, as well as thickness-shear deformations ß} and ß2 and thickness-stretch 

deformations Wj and w2. In this work, the thickness-stretch components Wj and w2 will be 

neglected in applications for mid to moderately high frequencies. With the neglection of Wj and 

w2, there are five branches in the frequency-wavenumber spectrum (two acoustic and three 

optical branches) that extend the classical Love (thin-shell membrane-bending) theory to a much 
higher frequency range. 

The six elastic strains at any point (a-,, oc2, z) are defined by Kraus27 as 

e33 = 0, 

Yl2 =iT77iT(fl+Ztl)+!T77I7(?2 +"2)- 

TI3—£- 1 + z/Ri' 

M-2 Y23=I7I7v <42> 

12 



where the quantities with a bar represent the mid-surface normal and shear strains, and the other 

quantities reflect the linear deformation through the thickness. Rj and R2 are the principal radii 

of curvatures in the av cc2 directions, respectively. 

The mid-surface normal and shear strains are given by 

_ _ 1 3u!      U2   9hj     w 

hi dax    h^ 3a2    Ri' 

1 3u2      Uj   dh2     w 

h2 3a2    h^ dcLi    R2 

Y = * 8u2      ul   8hl t 
hi 8a!    h^ 3a2 ' 

1  dui      u2   dh2 ,A ^ 
Y2 = -• (4-3) 

h2 8a2    h^ dax 

The independent shear deformation components of the shear strains are given in terms of ßj and 

ß2 as follows: 

1 3ß2      ßi   dh^ 
hi 3a!    hih2 da2 ' 

2    h2 da2    h!h2 dax' 

where x, and x7 are the twists associated with the mid-surface, thus, 

(4.4) 

_      1  3w     ui    0 

^■r^r  p +ßi' hj daj    Rj 
_       1   dw     uo    0 u2 = — *- + ß2. K2    h29a2    R2   

H2 

(4.5) 

Let the total twist x and the total shear strain of the mid-surface Y12 De expressed by 

X = X1+T2 and Yi2=Yi+Y2- (4-6) 

13 



The bending components of strain Kj and K2 are the changes of curvature of the mid-surface so 
that 

14 

hj 3a!    hih2 3a2 ' 

E  _ 1 3ß2 ,   ßi   3h2 

h2 da2    hjh2 Bcq 

(4.7) 



5. STRESS-STRAIN RELATIONS 

The stress-strain relationships for an isotropic elastic shell can be written for the non- 

vanishing strains as 

°11- =          2[En+V822L 
l-vz 

a22 = 
l-vz 

*12 = --Gyl2, 

*13: = G'Yi3=KGYi3, 

T23 = G
,
Y23=KGY235 

(5.1) 

and 

G = 
2(1 +v) 

K = 7t2/12, 

G' = KG, (5.2) 

where E is the Young's modulus, v is the Poisson's ratio, G is the shear modulus, G' is the 

corrected shear modulus to compensate for the thickness-shear deformation, and K is the 

correction factor given by Mindlin.32'33 

15/(16 blank) 



6. LAGRANGIAN OF THE DYNAMIC SYSTEM FOR A THIN SHELL 

The equations of motion of the vibration of shells can be derived from the Lagrangian L 

defined as 

L = -U + K + X, (6.1) 

where U is the strain energy of the shell, K is the kinetic energy of the shell, and X is the 
potential for the work done by external surface distributed forces. 

The strain energy density Ü per unit volume is defined by 

Ü = -[CT11811+a22S22+Yl2'c12+Yl3'r13+Y23T23]- (6-2) 

Substituting the stress-strain relations in equation (5.1), the strain energy density is obtained as 

U = i-5T[Ef1 + el2 +2vEne22 +^(Yi2 +KYi3 +KY23)]- (6-3) 
2 1 - v 2 

The kinetic energy density per unit volume is defined by 

K = ^-ps[Üf+Ü^+W2], (6.4) 

where ps is the density of the shell's material, and the dot indicates the partial derivative with 

respect to time 9/9t. 

A surface element dS at any surface z is 

dS = (l + z/R1)(l + z/R2)dS, (6.5) 

with the surface element at mid-surface dS defined as 

dS = h1h2da1da2- 

The total strain energy of a shell of variable thickness h(al5 cc2) is 

17 



h/2 
U= J  J     l   Ü(cclfcc2,z)dSdz. (6.6) 

aj a2 -h / 2 

The total kinetic energy of the shell is thus given by 

h/2 
K= J"  J     J   K(a1,a2,z)dSdz. (6.7) 

aj a2 -h / 2 

The potential for external distributed force fields acting on the upper (h/2) and lower (-h/2) 

surfaces of the shell is the product of these force fields and the corresponding displacements at the 
upper and lower surfaces, integrated over the upper and lower surfaces. 

Let Qu,» <lu2»and Qw be the distributed forces per unit area in the 1,2 and 3 directions, 
applied on the upper surface of the shell and let q~ , q~2, and q~ be the corresponding forces 
applied on the lower surface of the shell. Since the surface element dS is a function of z, then 

dS+=[l + -^][l + —]dS, 
2Ri        2R2 

h h      - (6-8> 
dS   =[1——][1 —]dS. 

2Ri        2R2
J 

The total work done by these distributed surface forces is the product of these forces and the 
corresponding displacements evaluated at the upper and lower surfaces, i.e., 

X= j  J (quUi++q;2Uj+q+W+)dS+ +J  J (q"Uf +qä2U£+ q;W-)dS~ (6.9) 

where the +/- superscripts indicate the upper/lower surfaces of the shell. 

Since the dependence of the strains and velocities on z is known (see eqs. (4.1) and (4.2)), 

then one can perform the integration over z across the shell's thickness. To perform these 

integrations, expressions containing various terms in z must be approximated as follows for 

—«1, valid up to the order 0(h7/R7): 
R 
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h/2 
J   (l + z/R1)(l + z/R2)dz = hjl + 

-h/2 
12RiR2  ' 

h/2 
h5 f 1       1 J    (l + z/R1)(l + z/R2)zdZ = - - + -j 

-h/2 

h/2 h3 L     3    h2 

1 »«'».»«'^^ijH-j,,^ 
—h/2 

h/2 ,       ,„ r 

J     l+z/R2 

/_L__L' 
-h/2 

h/2 

1       1 ^ 
12R2^RL    R2J    80R^Ri    R2 

r    1 + z/Ri    ,      hJ 

 Lzdz =— J     1 + z/Ro 12 
hV 1       1 

-h/2 

h/2 

VRl    R2, 

3h^ 

20 R2 

J     l + z/R9 12 

3h2 ( 1       M 
20 Rc 

-h/2 

h/2 

J     l + z/R2 80^Rt    R2 
—h/2 

vRi   R2; 

i+z/Ri,3, .x{ 1   ^ 

h/2 

I 
-h/2 

II 
p    1 + z/Ri   4,      h 
 -z dz = - J     1 + z/Ro 81 

5 

80 
(6.10) 

One may interchange Rj with R2, and vice versa. Substituting the expression for the displace- 

ment field in equation (4.1), then the expression for the kinetic energy density in (6.4) becomes 

K = ^.[(Ü! + zßO2 + (ü2 + zß2)
2 + w2]. 

Using equation (6.10), the integral of the kinetic energy over z only in equation (6.7) 

results in 
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h/2 

J 
-h/2 

J KdSdz = |p2h< 1+ 
12RjR2 

[ü2 +ü2
I+w2] + 2(ü1/31+ü2/32)^- 

VR1     R2y 

(6.11) 

+- 
12 

1+ 3    h/ 
20 R^ [Ä2+Ä2] dS. 

The expression for the total work done by external forces in equation (6.9) can also be simplified 

by substituting for the displacements and the surface elements at the upper/lower surface so that 

and 

uf = ui±£ßl, 

U2=U2±-ß2. 

W±=w. 

This results in the following expression for X: 

X= f   j (qu1Ui+qu2U2+qww + mßiß1+mß2ß2)dS, 

«1«2 

where 

^=(<+^(1+Ü+i(i+i)«-^). 
qu, =(qj,+qu,) 

a  \ 
i+- 

4RiR2 

h 
+ — 

2 

1       11 + ^ + ^J(qu2-qu2), 

qw = (qw+qw) 
.2     \ 

1 + - 
4RiR2. 

+I(RT+R7)(^-^)3 

(6.12) 

mß,=-< (qJ,-qUl) 'i+-J!LU''   • 
4RiR2J    2 v 7+£)<+"£,>}. 

HIR   =• (qJ, -quJ 1+- 
h2 l hfi   n , 

4RiR2 
(6.13) 
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Note that if the surface forces are applied equally at the two surfaces, i.e., if q^ = qü2 = qUj / 2, 

Qu = Qu = <iu / 2, and q* = q^, = qw / 2, then the force fields are the resultants applied at the 

central surface of the shell, z = 0, i.e.: 

qU] = qUl 

'         h2    ^ 
1 +  

4RiR2. 

qu, = qu, 
( h2     ^ 
1+     h 

V 4RiR2 

qw = q 
(      h2  ^ 

w 1 + - 
4RiR2. 

_ h2n    n 
mo = qu — — + — 

*    4Ul 4 l^Ri    R2j 

_    h2 

m^=Q^2~l 
rj_+n 

Ri+R2J' 

where q represent the equivalent force fields applied at the central surface, z = 0. 

The integral of the strain energy density in equation (6.3) can be written as: 

h/2 

c^ a2 -h / 2 

+ 2v(£1+zK1)(82+zK2) 

1-v 
(Yi + ZT!)2 A(z) + (Y2 * ^2)   + 2(Yi + ZT!)(Y2 +zx2) 

A(z) 

rj-2 

+K(jL2A(z) + -^2-) P1 A(z) 
dzdS, (6.14) 

,       ...     l + z/R2 where A(z) = — w     1 + z/Ri 
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Integrating the strain energy density over z and keeping terms up to 0(h3) in the Taylor 
series expansion, one gets 

U = i-^Tf   fÜdS 
2l-v2 J   J 

(XiCC 1"2 
where 

U = h^?+£l+2v8182+^[(Y1+Y2)2+K(jI1
2+^)]| + ^-|(Kf+Ki+2vK1K2) 

+ 
'2        2 
-L—2.-2e1K1+2e2K2 
Rl    R2 

2  2 Ri    R 
1 ^    1-v 

+  
1) 

'-2     -2 

£--^--271*1+272*2 Kl     K2 <R1     R2, 

+ (T1+T2)
2+YK 

fji2      772^ ^1      ^2 

vRi   R2; 

r_L_j_ 
*,R1     R2 

(6.15) 

Note that Yi + Y2 = Yi2- The constant y in the last term of (6.15) was introduced by Naghdi34 as 

Y = 3/7 to further correct the shear correction factor, K. 
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7. GEOMETRIC AND KINEMATICAL EQUATIONS FOR A 
PSS OF CONSTANT THICKNESS 

Consider a PSS of constant thickness whose mid-surface is defined by £ = a > 1 and inter- 

focal distance d. A point on the shell's mid-surface is given by coordinates cCj = r\ and o^ = (|). 

The shell's length 2£ and maximum radius R are given by (see figure 7.1) 

Half length t = da/2, 

Maximum radius R = dVa  -1 / 2, 

Va2-1 
Ratio of diameter/length = , 

a 
Eccentricity e = 1/a. (7.1) 

The metric coefficients of a surface element at the mid-surface of the shell, h^ and h^, and 

the surface element dA at any point T|, (j) are given by 

and 

dS=f-l Va2-lVa2-Tl2dTid^. (7.3) 

The principal radii of curvatures at any point (r|,(j)) are 

R    -R   _ d        *      /„2    „2^3/2 

Letting 
Uj=U, u2 = v, ßi = ft,- ß2 = ß*, 
R1=RT!' ^2 = R<t>' hl = \> h2 = h^, 
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Figure 7.1. Geometry of a PSS of Constant Thickness 

then the kinematical variables for a PSS shell become 

-     _J_3u     w 
71    hj, dr]    R^' 

1 dv       u    dlu     w £2 = E<b = + — H  h^ 3(|)    h^ 3T)     R^' 

- _-       1 dv 
Yi - YTI - ,    "^—» h^ati 

- __   __l_d£       v    dh^ 
h^ 9(f)    h^ dr\ ' 

Y1+Y2=YI2=Y^=r^--^ + ^, hri OTJ    h^ dr\     h^ d<]> (7.5) 
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and 

Kl - KT1 - 
_ i aßn 

K 3*1 ' 

Ko — KA — 
1    dh$ 

h^ d<|)     h^h^ 3TI 

_    _       1 3w     u     0 

_     _       1 9w     v 

■ßn- 

(7-6) 
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8. DERIVATION OF THE EQUATIONS OF MOTION 

The equations of motion of the shell are derived from the Lagrangian. Let a function L be 

L = L(Xj,yk,^-,^-^-) = L(xjIyk,ykj-,ykJ^), k=l,2,3,4,5; j,*= 1,2,3,       (8.1) 

where Xj are the independent variables, yk are the dependant variables, and the comma in the 
sub-indices indicates partial differentiation. The Lagrangian L is given as an integral, i.e., 

F= J   J|LdSdt=J  j" J(-U + K + X)dSdt. 
axa2 axa2 

(8.2) 

The partial differential equations of motion are then given by 

dL      d ( dL }     d 
3yk    ax!iayk4 V'w; dxr 

dh ( 3L ^ d2 f  dL }    d2 (   9L  ^ 

3yk,2J   9x3l ayk,3 J   3xfl3yk,nJ   9x^3yk,22 
+ ■ 

+- 
dL  }       d2    (   dL  }       d2    (   dL  } _a2_r_aL_Ni 

9x3ldyk,33j    dxldx2^yk,12j ' dx2dx3 ^yk,23j ' &3 3*11^,31 
+ • 

(8.3) 

= 0, 

where k = 1, 2, 3,4, 5. Letting 

x1=i\, x2 = (J>, x3 = t, 

yi = u. y2 = v> y3 = w'        y4 = Pn»     a110        ys = 

then there are five equations of motion on the five independent kinematical variables. 

One can obtain the five coupled partial differential equations by applying the calculus of 
variations, equation (8.3), on the Lagrangian L. Since the Lagrangian is a very long expression, 
the application of equation (8.3) is performed for each component of L, i.e., K, X, and U. 
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To simplify the algebraic manipulations, one can multiply L by (l-v2)/(Eh). To non- 

dimensionalize the independent variables, let 

ü = u/£     \ = v/£     vf = v//£, (8.4) 

and 

Cp=^I^' (85) 

where 

da                                                          \\ 
l~ Y = half-length of the shell, and   e = g- is the flexure coefficient. (8.6) 

8.1   EXTERNAL WORK 

The external work X has terms with yk only, so that the application of (8.3) results in the 
following terms of the type dX/dyk: 

1-v2 

^ Wquh^' 

Eq2:  ^v^, 

1-V2 

^3: ~Eh7qwhT,h*' (8J) 

1-v2 

***' ihT2"1^1171^' 

l-v2 

Eq5:  s-mo h^h*. 

8.2   KINETIC ENERGY 

The inertial terms are determined by using (8.3). The kinetic energy has terms of the type 

yk;t so that the application of equations (8.3) results in differentials of the type -— 
at 
df dK 

dyk,t 
Li.e., 

28 



Eql:  —5- ü(l + 
h2,l 

'    in e^T>       D . /KTI ^R^     121 R^    R^ 
h^h^, 

Eq2:-4" 
CPL 

v(l + 
^R^R,)) 

,    h2 . 1       1 
■) + (— + — 

12^    R«, 
hqh,),, 

Eq3: -— 
CP 

w"(l + 
l^R^R^ 

h-qh^, (8.8) 

Eq4: 
1   h^ 

;212^ 
-ßr,(l +  
r*1       20 R^ 

) + u(— + —) 
Rrj    R<|> 

hr, hjj), 

1  h^ 
Eq5:  - n Tß*(l + - 

3h^ 

rv       20RT1R(j) 
■) + v(— + —) 

Rii   R<|> 
hT)N 

8.3   STRAIN ENERGY 

The strain energy has terms with partial differentials of up to second-order in r\ and 0. 

Applying (8.3) to the expressions for U in (6.15) would result in five coupled partial differential 

equations. These can be written symbolically as 

Eq 1:  Luuu + Luvv + Luww + L^ ß^ + Luß^ 

Eq2: L^u + Lwv + Lvww + Lvß ß^+Lyß 

Eq 3: Lwuu + Lwvv + Lwww + Lwß ß^ + Lwß ß(j>, (8.9) 

Eq 4:  Lß^u + Lß^v + Lß^w + Lß^ + Lß^, 

Eq 5:  Lß$uü + Lß$vv + Lß0Ww + Lß^ + Lp#p^. 

The partial differential operators (Ly) will be defined in the proceeding subsections. To simplify 

the expressions, the following variables will be used: 
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A = a2 - 1 B = 1 - Ti2 C = a2 - Ti2, 

^     Va2 -1 1 - v 
D=   I 2      2 

F = -T- Y = 3/7, K = TT2/12. 
Va  -TI

Z 2 

8.4   EQUATIONS OF MOTION FOR NONAXISYMMETRIC VIBRATIONS 

8.4.1   First Equation 

2.9u     F du 2rr 
Luuü = DB-T-TiD(l + D/)^+-!-^4 + 

dT| 3TI   DB d^ 
2D       2D   T,    2D3 

-11 —-vaz FKaz — 
B C C 

+ 8 -a 4
BD a2* 

B—+ TI(3-7D 
2) 2^u 

3ri 
+ F 

a4D3 a2ü 

A3   8(j)2 
4 2   D      ^      6D

3B 
aV 2--FYKa6-^ 

AC2 C4 (8.10) 

B a<> aria<t>     Ac2       d$\ (8.11) 

T     _    aDVB L„„w=^r [(1 + FK)D^v]J + a3f(4A + B)W 

f 5A VB 
5/2 

B ,„   _    „ 3w 16        A 
--2 (1 + FYK)— + TlHy " 4" + 94] W 
Cz dr\       A2    C2      C3 (8.12) 

LußßT1=FKD2ßT1+6 

+ #-FYK^5 

cz 8TIZ     " ' c3 a-n     Ac a<t>2 

ßrii (8.13) 

^-.-o.ioA.iÄ- (8.14) 
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8.4.2   Second Equation 

L^->IU(1+F)ä4(1+F>^t (8.15) 

i2« Ar. 3zv o    3v      1   d v 
Lvvv = FDBfl - FD(1 + D2)T]f-+-^^-2 + F 

3Tf 3TI   DB 9(j)z 
2D      2D       20 

az TT Ka - 
C B A 

+ E -Fa 4
BD i2- 

+ a 
4 D3 82v    Fa4D 

A3a<i>2 C2A 
TI

2
+YK 

a2B" (8.16) 

L™W=VSI 
t0 + P^]g + .{0 + W*Sgl (8.17) 

L^ß^sid + F)^2^^}, (8.18) 

LvßA=FKß<|> = FK3,K-I-8 -4F—-,-Ti 
*2a\+Fa2B2a2 

cj    a-n   Ac a^       cr art 2  ^2 

ti2a2 a4B 

AC2 
(8.19) 

5.4.3   Third Equation 

T       --_      ^ Lwuu ~    a „3/2 [A(l + FK) + vC]fU- aT1 

'ari Vic 
1 + (V + FK)D

2
-3FK^ 

Cz 

+E^ a 
5 AB 3/2 

-,9/2 (1 + FKY)^-+ Tl-^-4l-[l + 3FKYD
4
(2 - 3D2)]ü (8.20) 

I~'~ :^(1+FK+VD2)I4(1+FKY)ÄI1' (8.21) 
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+ £ 

Lwww = FKD 

-FKY- 
a4DB" 

C3   [ 

,2x  9w      1   d: w a2w 
dT 3TI    D2Bd<|)2 

a2D [l + D4+2vD2]w 

BT3- + (3-7D
Z
)TI^- 

,2w9w 

3ri 

,4^3 ^2 _    a*DJdzw     6DB 
+ FKY—* *- + a°  3    ^A2 AJ   d<|> 

_1 1_ 

C3    A3 
w (8.22) 

LwßA=FKWB 
3ßn 

+ 8^-a" VBX 
B(FKY + 1)-^- 

JVI 
c2VX 

Ti[l + 3FKYD2(l-2D2)ßT1] (8.23) 

Vc 
L^^=FKWB"af+£ [1+FKY]I^72 

VB aß«. 
AC^/Z d<$> 

(8.24) 

&4.4   Fourth Equation 

Lßun = FKD2n + Ha2|i^|-4^^_F±la!ü + 
C

2
8TI

2
        C3     3TI      AC302 

aV    _    a4 AB 
—Ö-- FKY—T- u 

(8.25) 

PTI
      1       c3/2VÄd<i> (8.26) 

LßT1w
w = -FK 

VÄB3W      fa3VB 
a    9TI        C3VX (1 + FKY) AB— + TiC(-l + 3D2(1 - 2D2))w 

OK] 

(8.27) 

'ßA^l = -FK-g-ß.+e- 
az     ' 

D 
dT] dr| 

+ _F_a% 
DB d(j>2 

+D a2B^ C      2 1 
—!—v— + FKY -ö v  B     c      V; ßriK (8.28) 
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Lß„ßA-"8' 
9 ß<s r\ 

(v + F)—^- + (1 + F) 
dT\d$ B 3<j) 

(8.29) 

8.4.5   Fifth Equation 

a2T]D 3ü 
Lp,uü = e 0 + F)^- , (8.30) 

Lß   V = FKV + 8 
Fa2B „a2v    ,A   9v 

B—Ö--4—ri— 
3TI2      C 'ari 

^1^1   _F_ 
AC dty2    C2 

2   2 a ri  + KY 
a4B" 

(8.31) 

T      _     „   VC 3w 
LR WW = -FK 7=-r— 

P*w aVI 9(1) 
+ 6W1+FKY) 

a3VB 9w 

Ac3/2a<t)[' 
(8.32) 

Lß«ßA-£' (v + F)|%-(l + F)A (8.33) 

Jß,ßA 
^  -N/ÄCD d ßd> ? 3ß<D      1  3 ß<h 

FDB—^--FTID(1 + D
2
)-^ + — ? 

3n2 8TI     DB d$2 

+ Fa2D 1     V B 

C    a2B        AC 
(8.34) 

8.4.6   Final Nondimensional Form of the Equations 

Eq 1: Luuü + Luvv + Luww + Luß ß^ + Luß ß^ 

l2'\„      a\VÄC^      ..   ^ö  1    1-v2   VÄC 
= ?1(       C2")"a1_U + 8( )ßnr"Eh~ ^2-qu' (8.35) 
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Eq2: L^u + ^v + L^ + L^ß^+L^ 

'p 

Eq3: L^u + L^v + ^w + L^ß^+L^ 

_£24ÄC..      a4 l-v^VÄC 
2   ^1 + en2)w—^r£-J-^ (8-37) c^   az Cz Eh       a 

Eq 4: Lß^uü + Lß^vv + Lß^ww + Lß^ß, + L^ 

C
P 

Eq 5:  Lß$uu + L^v + Lß^w + L^ß,, + L^fy 

_f JVÄCx ^.^^2^1  i-v2VÄc 
T8{—ß*-Kl + D )v   -^-2-m^. (8.39) 
CP 

8.5   EQUATIONS OF MOTION FOR AXISYMMETRIC VIBRATIONS 

For axisymmetric motion of PSS, d/d$ = 0, and hence the five coupled equations decouple 
into three coupled equations on u, w, and ß^ and two coupled equations on v and ß,,,. It can be 
seen that the expressions in (8.11), (8.14) in the first equation, (8.21) and (8.24) in the third 
equation and (8.26) and (8.29) in the fourth equation vanish, rendering the first, third, and fourth 
equations dependent on u, w, and ß^ exclusively. Furthermore, for axisymmetric motion, 
expressions in (8.15), (8.17), and (8.18) in the second equation, (8.30), (8.32), and (8.33) in the 
fifth equation vanish. This means that the second and fifth equations are exclusively dependent 
on v and ß.. 
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9. REDUCTION TO SPHERICAL SHELLS 

The equations of motion of spherical shells with shear deformations and rotatory inertias 

can be recovered from section 8 by taking the limits, d -» 0, a -> °°, and   — j=£ ->R. These 

were also derived earlier by Wilkinson,35 Prasad,36 and Wilkinson and Kalnins.37 

9.1 FIRST EQUATION 

*\2 *p *^2— 
Luuü = VI ^yh/I Ü] + F(2 - K)ü + -—j, 

OT] B # (9.1) 

Luvv = (l + F)^ + (v + F)^-, (9.2) 

LUWW = (1 + V + KF)VB^, (9.3) 

LußT)ßT1=FKßTl' (9.4) 

Luß0ß<J) =0' 

and 
2 2 

Right side = -r((l + e)u + 2ejL}-   ~V  Rqu. (9.5) 
Cp L u      Eh 

9.2 SECOND EQUATION 

L™n=(v+F>S-(i+F)fl' (96) 

Lwv = FVI ^[VI V] + F(2 - K)V + i|4. (9-7> 
dr| B B(() 

LVWW = (1 + V + KF)-^|^, (9.8) 

Lvß,ßn = o> 
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/ßA =FKß»' (9.9) 

Right side = ^-{(l + e)v + 2e ß^,}- ——Rq 
Eh (9.10) 

9.3   THIRD EQUATION 

L
WU

U
 = -(1 + V + KF)—[VIü], (9.11) 

L
WV

V
 
=

 
_
(1 + V + KF) 

1  8v 
(9.12) 

LWWW = FK— B 
8w 

an 
FK a2w „,.,   ,_ 

+T^F"2(1+V)W' (9.13) 

Wr^FK-h/Bß,], (9.14) 

Lwß^ß^FK-^^, (9.15) 

R ^   1-v^ 
Right side =~2-(l + 8)w Rq 

Eh (9.16) 

9.4   FOURTH EQUATION 

Lß„uG = FKÜ, (9.17) 

Lßi)Vv = 0, 

Lß7iWw = -FKVB-^, (9.18) 

Lß^ßr^-FKß^+e- 
d_ 

an 
B ößri 

an 
i a2ßn       n2 

+ F-—^.-[v + ILjß 
B 

(9.19) 
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Lß„ßA = e' (v + F)^-+(l + F)^-|^ 
dr\d$ B 3<|) 

(9.20) 

Right side =—£{^+211} m» . 
Eh      ^ 

(9.21) 

9.5   FIFTH EQUATION 

Lß,vV = FKV, 

T      _      _     1   9w 
LR ww = -FK-p—, 

(9.22) 

(9.23) 

LB3PTI=E{(V + F)^L-(1 + F)^ 
dl]d§ B 3(j) 

(9.24) 

Lß,ßA = "FK(V£' Ff B 
an 

+■ 
1? 
B d^ 

■ + F 1-3- 
B 

(9.25) 

2 2 
Right side =^-e{jL+2v}—^-mß # (9.26) 
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10. SUMMARY 

This report has documented the derivation of the equations of motion of PSS of constant 

thickness. The equations were derived from the Lagrangian of the system, including the strain 

and kinetic energies and the potential for external mechanical surface forces and moments. The 

strain energy density was derived for three independent (displacements and two changes-of- 

curvature. The strain energy was developed in a Taylor series of thickness-to-radius ratios of up 

to third order. Thus, the theory includes the effects of membrane, bending, and thickness-shear 

deformations. The kinetic energy density includes the translational as well as rotational 

components, so that the equations of motion include translational and rotatory inertias. The 

potential for external forces includes distributed surface forces and moments. 

Use of Hamilton's principle on the Lagrangian of the system resulted in five coupled partial 

differential equations for nonaxisymmetric vibration. These equations are self-adjoint and 

positive definite due to the use of the Lagrangian and the calculus of variations in their 

derivation. The five partial differential equations are coupled for non-axisymmetric motion but 

reduce to two systems for axisymmetric vibration. One system has three coupled partial 

differential equations on u, w, and ß^, i.e., nontorsional displacement fields and the second 

system has two coupled partial differential equations on v and ß^, i.e., torsional displacement 

fields. 

The thin-shell theory used in this report results in a frequency-wavenumber spectrum with 

five branches. The accuracy of the thin shell theory is judged on how accurate these branches 

agree with the exact elasticity theory. It has been known that the inclusion of the thickness-shear 

and rotatory inertia effects makes the lowest flexural branch have the correct group and phase 

velocities in the high-frequency/high-wavenumber limit. The second acoustic branch represents 

torsional motion and it also has the correct phase and group velocities in the high-frequency 

limit. The first optical branch represents longitudinal motion, where the group and phase 

velocities are approximately correct. The remaining two optical branches represent the 

thickness-shear modes. 

These equations were reduced to those for the nonaxisymmetric vibration of spherical 

shells and shown to agree with those developed earlier by various authors. 
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The five coupled partial differential equations have nonconstant coefficients and do not 
have closed form eigenfunctions that would satisfy the system of equations. In future reports, 

approximate comparison functions will be used for the five dependent variables u, v, w, ß , and 
ß,,,. These would result in coupled 5N x 5N algebraic equations in terms of N comparison 
function sets. 
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APPENDIX 
COMPENDIUM OF USEFUL FORMULAE FOR 

PROLATE SPHEROIDAL SHELLS 

In this appendix, the following variables will be used: 

A = a2-1,      B = 1-TI
2
, C = a2-T]2,     D = -f=——,   and    G = 2/d. 

Thus, 
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